迈科研 硬件说明书

AMC-EX320-B-R控制器硬件手册

文档版本

版本号	修订日期	修订内容
V1.0	2019.11.08.	正式版
	2023.06.20	修订版
		注:OUTPUT采用外部供
V 1.1		电 JNPUT 公共端可选择;
		外部端子统一黑色。
	2025.04.10	改封面

第一章 概述	4 -
1.1 简介	4 -
1.2 产品特点	5 -
1.3 型号说明	6 -
1.4 硬件规格	6 -
1.5 控制器外形与安装尺寸	7 -
第二章 控制模式	8 -
2.1 控制模式与接线	8 -
2.1.1 Alone(AMC+VGA)模式	8 -
2.1.2 A+PC 模式	9 -
第三章 使用说明	10 -
3.1 开箱检查	10 -
3.2 安装环境	10 -
3.3 准备工作	10 -
第四章 硬件说明	11 -
4.1 控制器型号规格参数说明	11 -
4.2 接口信号定义	12 -
4.2.1 电源输入接口	12 -
4.2.2 MPG 接口	12 -
4.2.3 PWM/AO 接口	13 -
4.2.4 USB 接口	13 -
4.2.5 EtherCAT 总线端口	13 -
4.2.6 EtherNet 端口	13 -
4.2.7 COM 通讯端口	14 -
4.2.8 信号指示灯	14 -
4.2.9 Estop 接口	14 -
4.2.10 TP 接口	14 -
4.2.11 INPUT 端口	15
4.2.12 OUTPUT 端口	16 -
4.3 扩展 GPIO 板	- 17 -

第一章 概述

1.1简介

由本公司所开发的 AMC (Intelligent Motion Control) 运动控制平台 运用 EtherCAT 通信,实现多轴定位及同动/不同动控制。

由内建基于 ARM 内核的运算处理器,搭配实时多任务操作系统 RTOS (RT-linux)及外围控制接口而组成嵌入式运动控制平台。AMC 控制器内建了 MCCL 运动控制函式库,具备运动控制所需的各项功能,除了可单机执行运动控制外,还可整合 Ethernet Controller 及RS232、RS485、CAN 等通用通信接口与外界沟通,内建 Web Server 可通过因特网远程进行命令下达与监控。

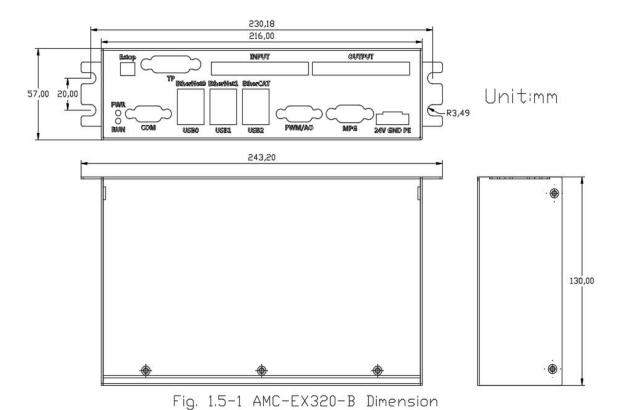
AMC 软件则搭配轨迹插值运算、整合发展套件、运动控制函式库、正反运动学算法等各项工具,可供用户进行应用系统的开发。

1.2产品特点

- Standalone 脱机型等工作模式;
- 内建 ARM 处理器及实时多工操作系统,多进程实时控制;
- 支持点位控制、直线插补、二维及三维圆弧插补,螺旋线插补功能,等线速度或等 角速度锥线插补功能,电子齿轮、电子凸轮功能;
- 跟随刀功能;
- 插补方式:可选前加减速或后加减速方式;
- 高速轨迹连续插补,速度平滑化处理;
- 正反运动学转换功能适用于关节机械手(选配);
- 定位确认,回程间隙,间隙补偿功能;
- 梯形/S 形对称加减速曲线、用户自定义每轴加减速时间;
- 独创的运动群组(motion group)操作概念可同时满足 多轴同动与多轴不同动的不同需求;
- 整合了各品牌伺服运动总线,实现多轴控制。

1.3型号说明

表格 1.3-1 AMC 型号说明

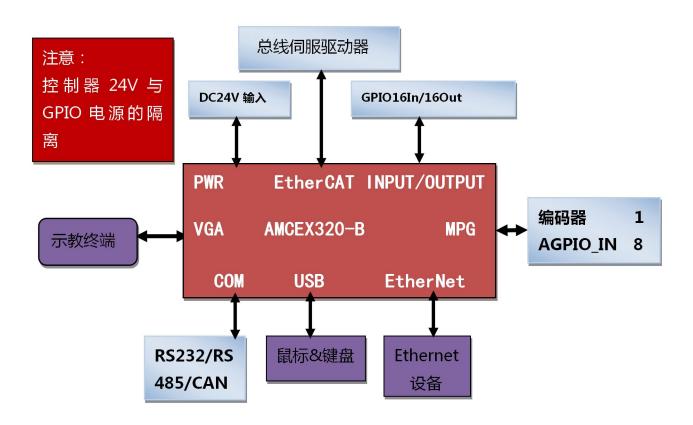

AMC-	EX	3	2	0	-B
	8:8 轴	以太网	0:脉冲控制	0:标准版	B:标准型号
	6:6 轴		1:模拟量控制	1:经济版	其他:客制化
					型 号
	4:4 轴		2:总线控制	2:高性能	
	EX:		3:复合控制	3:机器人	
	EtherCAT总线				

1.4硬件规格

表格 1.4-1 硬件资源列表

功能模块	规格参数	功能模块	规格参数
СРИ	Cortex-A8 32Bit 1GHz	RAM	512MB DDR3L
Encoder Interface	32bit 1Channel	Flash	4GB eMMC
Timer	32bits	Ethernet	2Set
Watch dog timer	32bits	RS232	1Set
GSB(General Servo Bus)	EtherCAT	RS485	1Set
USB	3Set	CAN	1Set
SD	1Set	AGPIO	7Input/1Output
GPIO	16Input/16Output		

1.5控制器外形与安装尺寸


● 外形请以实物为准

第二章 控制模式

2.1控制模式与接线

2.1.1 Alone (AMC+VGA)模式

Alone (AMC⁺VGA)模式为 AMC 单独运作模式,用户用 QT 编写人机界面以及应用程序,然后把可执行档放入 AMC 控制器中,具体开发方法请参见《AMC Series QT 版本运动控制函数库使用手册》,应用程序中所有与运动相关之运动控制函数,运动控制功能皆由 AMC 控制器运算处理;人机接口及其它应用函数,也由 AMC 运算处理,并通过 VGA接口,接示教器或普通 VGA 显示屏显示输出界面。此模式可单机运行应用程序,大大节省了控制器系统的硬件成本。

图表 2.1.1 Alone 模式结构示意图

2.1.2 A+PC 模式

A⁺PC 模式为用户用个人计算机或工控触摸屏开发、编译及执行应用程序,应用程序中所有与运动相关之运动控制函数,将通过 EtherNet 与 AMC 运动控制平台通信,运动控制功能皆由 AMC 运算处理;人机接口及其它应用函数,则由 PC 机负责运算处理。PC 机强大的处理能力和广泛的适用性结合 AMC 控制器的实时性与专业的软硬件架构,可以开发更复杂更强大的应用程序。

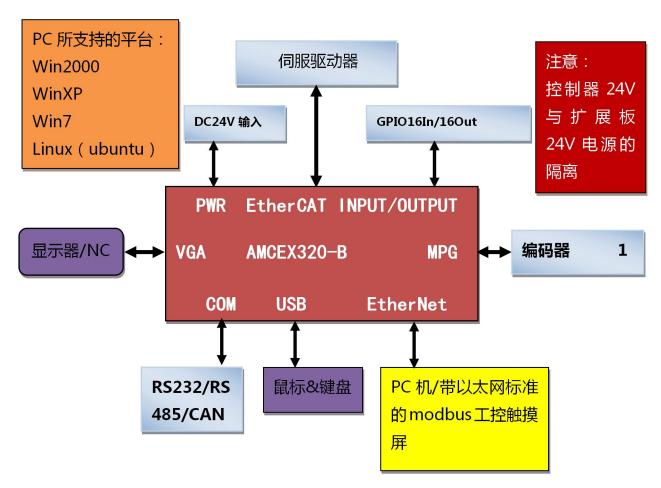


图 2.1.3 A+PC 控制模式结构图

第三章 使用说明

3.1开箱检查

打开包装前,请先查看外包装标明的产品型号是否与订购的产品一致。打开包装后,请首先检查运动控制器的表面是否有机械损坏,然后按照装箱清单或订购合同仔细核对配

件是否齐备。如果运动控制器表面有损坏或产品内容不符合,请与本公司联系。

器件	型号	数量	备注
控制器	AMC-EX320-B-R	1	必配
示教器	TP8TV-6-A	1	选配
GPIO 扩展板连接线	IDC2P54-50S1500L-S	1	选配
GPIO 扩展板	CBB-CPB0020-1	1	选配

3.2安装环境

控制器需远离大功率,强电磁干扰的电器或环境,注意接地良好。 控制器 24V 供电不与其他继电器 和刹车共用,需单独提供。

3.3准备工作

在安装之前,请先准备好以下物品:

器件	规格	数量	说明
直流开关电源	+24V	2	一个用于控制器和示教器供电 ,第二个用于转接
且加力人名加	1217	2	板、扩展板、刹车供电,保证两个电源是隔离的。
工业网线		1	用于 PC 机与控制器连接
串口线		按需求准备	用于 RS232 通信
RS232 转 RS485 转接器		按需求准备	用于 R485 通信
伺服驱动器		按需求准备	支持 EtherCAT 总线通信伺服驱动器
原点开关、正/负限位开关	NPN 型	按需求准备	选用 NPN 型,输出接地型传感器

- 除上表之外如果没有选配本公司示教器,还需自己配 VGA 显示屏与转接线、鼠标、键盘。
- 请确认控制板卡、电机驱动器、电机、IO 模块等均确实接地,以免参考电位不同而造成板卡的损坏。

第四章 硬件说明

4.1控制器型号规格参数说明

AMC 系列运动控制器是迈科讯推出的一款 4/8/32 轴带 EtherCAT 网络总线协议的运动控制器。控制器规格参数如下表:

型号	AMC-EX320-B-R
系统主频	32bit ARM 1GHz
RAM	512MB DDR3L
Flash	4GB eMMC
总线	EtherCAT 总线
电机驱动支持类型	步进电机/脉冲型伺服
控制轴数	32 MAX
最大脉冲频率	4MHz
脉冲方式支持	NC
编码器输入	1Channel
编码器反馈频率	4MHz
编码器反馈形式	A\B\Z,P\D,CW\CWW 方式
编码器倍频	X1 , X2 , X4
编码器	32Bits
辅助编码器	正交,并行多通道,Endat2.2 绝对值编码器
本地通用输入输出点	32
本地 IO 采样频率	2M
计时器	32Bits
看门狗计时器	32Bits
	100M Ethernet: 2set
	USB2.0: 3set
外设端口	RS232/RS485/CAN: 1set
	SD 卡卡槽
	输出

4.2接口信号定义

AMC-EX320-B-R 控制器提供了各种通用和专用接口,其中通用接口包括有:VGA、USB、EtherNet(100M 以太网接口)和 EtherCAT(100M 以太网接口),RS232/RS485,MPG,GPIO。AMC-EX320-B-R 中所有的通用和专用接口如下表。

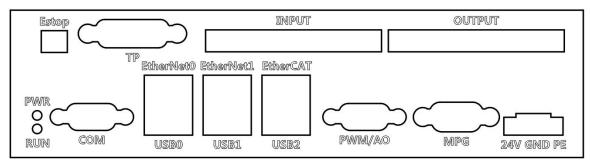


图 4.2.1 AMCEX320-B 接口面板

接口标识	功能	接口标识	功能
24V GND PE	DC24V 电源与保护地	СОМ	RS232&RS485&CAN
MPG	编码器&Fast IO	PWR RUN	电源指示灯 状态指示灯
PWM/AO	PWM 或模拟量输出	Estop	急停信号
USB	键盘、鼠标接口	TP	示教器连接端口
EtherCAT	EtherCAT 总线	INPUT	GPIO 输入
EtherNet	EtherNet 接口	OUTPUT	GPIO 输出

表格 4.2.1 控制器接口功能

4.2.1 电源输入接口

DC24V 电源输入端口,为控制器 24V 供电电源输入端口,给控制器提供电源。接口 PE 脚为控制器保护地,需要接到稳定可靠的大地。

4.2.2 MPG 接口

MPG 接口为 DB15 接口,包含编码器信号(手持轮信号)1组,AGPIO 输入信号8组、输出信号1组,以及5V电源1组,电源用以给外接手持轮供电。引脚定义参考下表4.2.2:

端子 编号	信 号 名称	说明	端子 编号	信 号 名称	说明
1	5V	5V 电源	9	GPI2	AGPIO 输入信号 , 低
2	GND	地	10	GPI3	电平有效
3	EAP0	编码器	11	GPI4	
4	EAN0		12	GPI5	
5	EBP0		13	GPI6	
6	EBN0		14	GPI7	
7	GPI0	AGPIO 输入信号, 低	15	GPO0	AGPIO 输出信号
8	GPI1	电平有效			

表格 4.2.2 MPG 引脚定义

4.2.3 PWM/AO接口

PWM/AO 端口为 DB9 标准端口,包含可选择的 3 路 PWM 差分信号或者 3 路模拟量单端信号(Analog Output),通过出厂配置决定输出,默认配置是模拟量输出。PWM 的频率最高可达到 4MHz, AO 输出模拟电压范围 0~10.0V,误差<5%。

编号	接口描述	编号	接口描述
1	PWM0+ (AO0)	6	PWM2-
2	PWM0-	7	DGND
3	PWM1+ (AO1)	8	NC
4	PWM1-	9	AGND
5	PWM2+ (AO2)		

表格 4.2.3 PWM/AO 引脚定义

4.2.4 USB接口

USB2.0 接口为外设连接端口,可连接鼠标、键盘、HUB等。

4.2.5 EtherCAT 总线端口

EtherCAT 控制器总线端口为 RJ45 接口,与总线驱动器或 IO 通信。

4.2.6 EtherNet 端口

EtherNet 端口为标准 RJ45 端口,主要用于系统调试,扩展 IO 的等 EtherNet 通信设备。

4.2.7 COM 通讯端口

COM 端口为 DB9 端口,用来支持通讯功能,包括 RS232、RS485、CAN。其接口定义如表格 4.2.4 所示。

端子 编号	信号名称	说明	端子 编号	信 号 名称	说明
1	NC	/	6	485-A	RS485 通讯
2	RS232_RXD	终端 RS232 接收	7	CAN_H	CAN High
3	RS232_TXD	终端 RS232 发送	8	CAN_L	CAN Low
4	NC	/	9	485-B	RS485 通讯
5	GND	地信号			

表格 4.2.4 COM 接口定义

4.2.8 信号指示灯

PWR 与 RUN 指示灯, PWR 为系统电源指示灯, 当系统正常上电时, 亮红色, 否则系统电源故障; RUN 为系统运行指示灯, 当系统正常运行时, 亮绿色灯, 否则系统运行异常。

4.2.9 Estop 接口

Estop 为示教器端通过的急停信号端口,通过该端口连接伺服驱动器,可以在示教器端的急停开关紧急停止伺服; Estop 接线方向为+端进-端出,请勿接反以防损坏内部光耦。

4.2.10 TP 接口

TP接口为示教器连接端口,连接头为 DB26接口。该接口包含显示用 VGA 信号以及触控用 UART信号,其余为示教器面板,开关等信号。

编号	定义	编号	定义
1	VGA-R	14	NC
2	VGA-R_GND	15	NC
3	VGA-G	16	NC
4	VGA-G_GND	17	NC
5	VGA-B	18	NC
6	VGA-B_GND	19	示教器急停 POS
7	VGA-HSYNC	20	示教器急停 NEG

表格 4.2.5 TP 接口定义

8	GND	21	示教器钥匙开关左
9	VGA-VSYNC	22	示教器钥匙开关右
10	GND	23	示教器使能开关
11	RS232_TX	24	示教器报警灯
12	RS232_RX	25	示教器电源 0V
13	NC	26	示教器电源 24V

4.2.11 INPUT 端口

INPUT 端口为可配置双向输入设计,电路示意图如下表 4.2.6 所示,公共端为 COM,需要手动将 COM 接到参考电平上以使用 INPUT 信号,其中 INPUT00~INPUT07 对应的 COM1, INPUT08~INPUT15 对应的 COM2;可根据需求更改 NPN/PNP 输入方式。

表格 4.2.6 GPIO 输入引脚定义

编号	接口定义	编号	接口定义
1	COM1	10	INPUT07
2	COM2	11	INPUT08
3	INPUT00	12	INPUT09
4	INPUT01	13	INPUT10
5	INPUT02	14	INPUT11
6	INPUT03	15	INPUT12
7	INPUT04	16	INPUT13
8	INPUT05	17	INPUT14
9	INPUT06	18	INPUT15

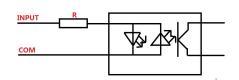


图 4.2.2 GOIO 输入电路示意图

4.2.12 OUTPUT 端口

表格 4.2.7 GPIO 输出引脚定义

编号	接口定义	编号	接口定义
1	24V 输入	10	OUTPUT07
2	0V 输入	11	OUTPUT08
3	OUTPUT00	12	OUTPUT09
4	OUTPUT01	13	OUTPUT10
5	OUTPUT02	14	OUTPUT11
6	OUTPUT03	15	OUTPUT12
7	OUTPUT04	16	OUTPUT13
8	OUTPUT05	17	OUTPUT14
9	OUTPUT06	18	OUTPUT15

OUTPUT 输出为 NPN 集电极开路输出,公共端为 24V,其引脚定义如表格 4.2.3 所示:

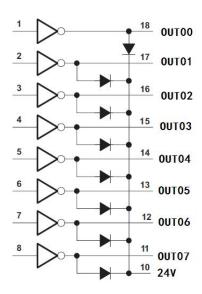


图 4.2.3 GOIO 输出电路示意图

4.3 扩展 GPIO 板

本控制器 GPIO 接口可外接配套的 GPIO 扩展板,以增强系统 IO 负载驱动能力。扩展 GPIO 板详情参照《IO 接口板说明书》。